Previous Section
 < Day Day Up > 
Next Section


Chapter notes

In 1968, Knuth published the first of three volumes with the general title The Art of Computer Programming [182, 183, 185]. The first volume ushered in the modern study of computer algorithms with a focus on the analysis of running time, and the full series remains an engaging and worthwhile reference for many of the topics presented here. According to Knuth, the word "algorithm" is derived from the name "al-Khowârizmî," a ninth-century Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algorithms as a means of comparing relative performance. They also popularized the use of recurrence relations to describe the running times of recursive algorithms.

Knuth [185] provides an encyclopedic treatment of many sorting algorithms. His comparison of sorting algorithms (page 381) includes exact step-counting analyses, like the one we performed here for insertion sort. Knuth's discussion of insertion sort encompasses several variations of the algorithm. The most important of these is Shell's sort, introduced by D. L. Shell, which uses insertion sort on periodic subsequences of the input to produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical collator capable of merging two decks of punched cards in a single pass was invented in 1938. J. von Neumann, one of the pioneers of computer science, apparently wrote a program for merge sort on the EDVAC computer in 1945.

The early history of proving programs correct is described by Gries [133], who credits P. Naur with the first article in this field. Gries attributes loop invariants to R. W. Floyd. The textbook by Mitchell [222] describes more recent progress in proving programs correct.



Previous Section
 < Day Day Up > 
Next Section